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Abstract 6 

We analyze the diurnal cycle of maximum rainfall from ~300 TCs from March 2014 7 

through February 2017, by cross-referencing the path of tropical cyclones (TCs) and high-8 

resolution rainfall estimates from IMERG (Integrated Multi-satellitE Rainfall from GPM - 9 

Global Precipitation Measurement mission). IMERG is a gridded satellite product that 10 

offers high-resolution rainfall estimates at a spatiotemporal resolution of 0.1°×0.1° every 11 

30 minutes, which are particularly suitable for these analyses.  12 

Because of the nature of the data, we use circular statistics. Circular statistics allows us to 13 

account for the natural periodicity of a random variable such as the time of the day at 14 

which maximum rainfall from TCs occurs. We follow the non-parametric approach of 15 

Mixtures of Von Mises-Fisher distribution (MvMF), which enables an easy-to-interpret 16 

parameter identification of multimodal and anisotropic distributions of the TC-rainfall. We 17 

stratify our analysis by storm duration, maturity, and intensity, basin of origin, radial 18 
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proximity to the center of the storm, and whether the storm is over the ocean or land. 19 

In general, and across all scales, we find that there are mainly two cycles of maximum TC-20 

rainfall: one diurnal cycle with peaks at ~10 and ~22h (local time), and one semi-diurnal 21 

cycle with peaks at ~2 and ~5h (local time). Although in a smaller proportion, the latter 22 

exhibits a weak afternoon alternative, i.e., ~14 and ~18h (local time). 23 

Keywords: Tropical Cyclones, Diurnal Cycle, Rainfall, Circular Statistics, IMERG 24 

1. Introduction 25 

Tropical cyclones (TCs) are phenomena of paramount importance not only for the rain 26 

they produce but also for the havoc they unleash, both in coastal and inland areas (e.g. 27 

Czajkowski et al., 2017; Khouakhi et al., 2017). They are also considered the deadliest 28 

type of weather-related disasters, as the death toll from ~2,000 storms (from 1995 through 29 

2015) amounts to ~242,000 fatalities (UNISDR and CRED, 2017) or 251,384 (roughly 30 

equivalent to 40% of the total casualties from weather-related disasters) from 1980 to 31 

2000 according to (UNDP, 2004, p.37). For instance, in 2017 Hurricane Harvey brought 32 

almost 125,000m3 of rain, spread over four U.S. states (Fritz and Samenow, 2017). 33 

Averaged over the Houston area, the lowest total precipitation in seven days brought by 34 

Hurricane Harvey was 700.2mm, which is more than double of any previous record 35 

(315.8mm for seven days of rainfall) between 1950-2016 (Risser and Wehner, 2017). Put 36 

into perspective, this amount of rainfall is the equivalent to the yearly average precipitation 37 

in Houston (Burian and Shepherd, 2005; Fritz and Samenow, 2017). Overall, Hurricane 38 

Harvey produced the largest rainfall ever recorded of any hurricane affecting the United 39 

States (e.g. Emanuel, 2017; NOAA-WPC, 2017; Samenow, 2017). The number of 40 

fatalities caused by this storm is reported to be ~80 people (e.g. Moravec, 2017; van 41 
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Oldenborgh et al., 2017). 42 

The impact exerted by TCs comes from the high-wave storm surges, extreme winds, and 43 

floods and landslides associated with the torrential rains they produce (e.g. Mendelsohn et 44 

al., 2012; Peduzzi et al., 2012). Out of these three factors, we devote our attention to the 45 

characterization of heavy rainfall from TCs given its direct relation to flooding, which in the 46 

last two decades has affected ~2.3 billion people (UNISDR and CRED, 2017). This is 47 

equivalent to 56% of the people affected by weather-related disasters. Hence, the 48 

characterization of heavy rainfall from TCs provides essential information to assess and 49 

evaluate the impact from landfalling TCs, helping thus potential affected communities to 50 

be more resilient against such natural hazards. Several studies have focused on TC-51 

rainfall characterization. For instance, (Prat and Nelson, 2016) studied the contribution of 52 

TCs to extreme daily rainfall, whereas (Prat and Nelson, 2013) established the 53 

contribution of TC-rainfall to the seasonal precipitation totals for the southeastern United 54 

States. (Jiang et al., 2008) analyzed the rainfall distribution from landfalling TCs in the 55 

north Atlantic basin. All of the above studies were based on about one decade of satellite 56 

data. (Lonfat et al., 2004; Rios Gaona et al., 2018) are global studies in which TC-rainfall 57 

is characterized and stratified by basin and intensity (among other features) also from 58 

global satellite data. 59 

The focus of this work is to delve into the diurnal cycle of TC-rainfall maxima. The number 60 

of studies about the diurnal cycle of TC-rainfall have grown in recent years due to the 61 

widespread development and availability of satellite rainfall estimates. (Bowman and 62 

Fowler, 2015) carried out statistical analyses over 15 years of TMPA 3B42 (Tropical 63 

Rainfall Measurement Mission - TRMM Multisatellite Precipitation Analysis) and IBTrACS 64 

(International Best Track Archive for Climate Stewardship) data to investigate the diurnal 65 
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cycle of TC-rainfall, which they see as one potential component of precipitation variability 66 

in these storms. (Wu et al., 2015) studied the diurnal variations of oceanic TC-rainfall in 67 

their inner core and outer rainbands. Their study was also based on 15 years (1998-2012) 68 

of TMPA 3B42 data (1401 TCs), and focused only on oceanic storms (i.e., beyond 300km 69 

from coastlines). (Leppert II and Cecil, 2016) used TRMM's Microwave Imager (TMI) and 70 

Precipitation Radar (PR) to study the diurnal cycle of 208 storms in the Atlantic basin 71 

during the period 1998-2011. They stratified their analyses by radii (from 100 to 1000km, 72 

every 100km), by intensity (wind speed larger than 34 kt, and 64 kt), and by height (2, 8, 73 

and 10km). More recently, (O’Neill et al., 2017) examined cloud-resolving TC simulations 74 

to understand the wavelike diurnal cycle responses on quasi-steady TCs. They found 75 

evidence of diurnal wave propagation in the upper troposphere in eddy-temperature fields. 76 

(Tang et al., 2017) studied the sensitivity of hurricane Secondary Eyewall Formation (SEF) 77 

to solar insolation. Through a numerical simulation, (Navarro et al., 2017) determined the 78 

impact of periodic diurnal heating on a balanced vortex, highlighting the importance of 79 

clouds. The introductions of (Bowman and Fowler, 2015; Leppert II and Cecil, 2016; 80 

O’Neill et al., 2017) provide extensive literature (and recounted details) on the diurnal 81 

cycle of oceanic precipitation (e.g. Frank, 1977; Hai-Long et al., 2013), of TC-rainfall (e.g. 82 

Jiang et al., 2011; Wu et al., 2015), and of cloud-tops changes (e.g. Browner et al., 1977; 83 

Dunion et al., 2014; Kossin, 2002). Studies on the diurnal cycle of TC-rainfall contribute to 84 

the characterization and understanding of TC-rainfall variability from the diurnal insolation 85 

cycle on TCs. Such a variation is key to improve storm intensity prediction, and TC 86 

modelling on global climate systems, for instance. 87 

Our work advances the knowledge of the diurnal cycle of maximum TC-rainfall because 88 

we use high-resolution satellite data and circular statistics. IMERG (Integrated Multi-89 
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satellitE Retrievals for GPM - Global Precipitation Measurement mission) is a follow-up on 90 

almost two decades on continuous rainfall monitoring at global scales from TRMM and its 91 

equivalent TMPA products (Huffman et al., 2007). IMERG is a gridded rainfall product with 92 

a spatiotemporal resolution of 0.1°×0.1° every 30 minutes (Hou et al., 2014). Rainfall 93 

monitoring at high resolution from space nowadays serves as a key tool to develop and 94 

enhance societal applications such as fresh water availability, flood forecasting, landslide 95 

warning, water-borne disease propagation, and storm-tracking (Kirschbaum and Patel, 96 

2016; Stanley et al., 2017). The main advantage with regard to storm-tracking is that from 97 

global rainfall estimates such IMERG one can track the precipitation path of such large 98 

scale storms that often are difficult to even quantify from ground-based sensors like 99 

gauges and weather radars. The IBTrACS data set offers a detailed record of TC-tracks 100 

and maximum sustained windspeed (MSW) of all the TCs worldwide since 1842 (and up 101 

to March 2017). By combining these two data sets, we can obtain a detailed and accurate 102 

description of the spatiotemporal variability of rainfall from TCs. This allows us to study the 103 

diurnal cycle of maximum rainfall for all the TCs (259) worldwide in a span of 3 years 104 

(GPM launched its core satellite on February 2014). 105 

In addition to high-resolution satellite data, we use circular statistics, which represents the 106 

appropriate statistical framework for analyses of this kind. In circular statistics the data 107 

under analysis is represented as points over a unit circle, which is the support for “circular” 108 

variables (Pewsey et al., 2013). In a circular space, all data is equally likely to be 109 

distributed over a segment equivalent to 2�. This abstraction has the unique advantage to 110 

account for the intrinsic periodicity of a circular and/or directional variables, such as time 111 

of the day at which rainfall occurs or the azimuthal direction of the maximum sustained 112 

windspeed of a hurricane, for instance. A basic example is that of the average of a 113 
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random variable that took place at 01:00 and 23:00, for instance. A linear analysis will tell 114 

us that the average time of such a random variable is 12:00. Due to the proximity of 01:00 115 

and 23:00 in a 24-h circular space, the circular analysis will yield an average time of 116 

00:00, which is a more correct approximation of the true nature of the random variable 117 

under analysis. 118 

Work on TC-rainfall via circular statistics has not been carried out so far. The common 119 

approach is to apply linear statistics to draw the cyclic patterns (e.g., Hu et al., 2017). 120 

Recent and related work on the implementation of circular analysis in hydrometeorological 121 

topics include those of (Dhakal et al., 2015; Masseran, 2015; Villarini, 2016). (Dhakal et 122 

al., 2015) developed a non-parametric (circular statistics) approach that optimizes the 123 

bandwidth(s) of a Von Mises distribution (Sec. 2). Their approach assessed the non-124 

stationarity of 60 years of maximum daily precipitation at ten locations in the northeastern 125 

United States. (Masseran, 2015) used non-parametric circular statistics to better 126 

characterize the wind regime in the northern region of Borneo (Malaysia). From almost 127 

one year of hourly wind direction data (one station only), they found that the finite mixture 128 

of Von Mises–Fisher approach (Sec. 2) systematically outperforms the one based on non-129 

negative trigonometric sums. From annual maximum instantaneous peak discharges 130 

(~7,500 gage stations with at least 30 years of data), (Villarini, 2016) applied circular 131 

statistics to study the seasonality of flooding across the continental United States. Other 132 

examples of developments and implementations of circular statistics in earth sciences 133 

(including mixtures of Von Mises–Fisher probability density functions - MvMF-PDFs) 134 

include those by (Lark et al., 2014; Oliveira et al., 2012). To the best of our knowledge, our 135 

work is the first of its kind that offers a comprehensive and quantitative characterization of 136 

the diurnal cycle of TC-rainfall maxima, analyzed via the circular statistics framework. 137 
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A detailed presentation of the theoretical framework of circular statistics is beyond the 138 

scope of this paper. For that matter, we point the interested reader to previous works 139 

carried out by (Fisher, 1993b; Mardia, 1972b; Mardia and Jupp, 2000; Pewsey et al., 140 

2013), where deep and comprehensive formulations, details, and references on the theory 141 

of circular statistics can be found. Our approach relies on the R-packages movMF (Hornik 142 

and Grün, 2014), circular (Agostinelli and Lund, 2017), and Directional (Tsagris et al., 143 

2017). R is computing language and environment for statistical analysis (R Core Team, 144 

2017). 145 

We stratify our analysis by TC duration, maturity, and intensity, basin of origin, distance 146 

from the center, and whether the storm is over the ocean or land. A thorough analysis of 147 

yet another characteristic of TC-rainfall such as the diurnal cycle of maximum TC-rainfall 148 

gets us closer to more realistic representations and models of the rainfall associated with 149 

TCs. We consider our approach a better assessment of the diurnal cycle because not only 150 

the available high-resolution data we use but also the circular framework offers a more 151 

accurate and appropriate approach for the statistical description of TC-rainfall maxima. 152 

This paper is organized as follows: Section 2 briefly describes the data we use and 153 

introduces the conceptual framework of circular statistics, and its implementation. Section 154 

3 presents the results and discussion alongside. Summary and conclusions are provided 155 

in Section 4. 156 

2. Data and Methodology 157 

Our data set is similar to that of (Rios Gaona et al., 2018), in which they analyzed 166 TCs 158 

for the period of March 2014 through March 2016. Hence, the analysis comes from the 159 

merging of two data sets: IBTrACS, and IMERG V04 Final. 160 
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The IBTrACS (v03r10) is a worldwide collection of TC best-track data (Knapp et al., 2010). 161 

Developed by the National Climatic Data Center (NCDC) jointly with the World Data 162 

Center for Meteorology, it is a comprehensive project that gathers information from all the 163 

Regional Specialized Meteorological Centers (RSMCs) and Tropical Cyclone Warning 164 

Centres (TCWCs) members of the World Meteorological Organization (WMO), and other 165 

national agencies (IBTrACS data is freely available from the server 166 

ftp://eclipse.ncdc.noaa.gov/pub/ibtracs/). The IBTrACS data set contains several attributes 167 

or variables. One of them is the seven basins in which the Earth’s surface is divided into 168 

from a TC perspective: North Atlantic (NA), Eastern Pacific (EP), Western Pacific (WP), 169 

Northern Indian Ocean (NI), Southern Indian Ocean (SI), South Pacific (SP), and South 170 

Atlantic (SA). Attributes such as MSW, the time at landfall (if available), and the longitude 171 

and latitude of the storm centers (from which later we interpolate the TC track at 30-172 

minute resolution) are also included in this data set. The temporal resolution of IBTrACS is 173 

6 hourly (00:00, 06:00, 12:00, and 18:00 UTC). 174 

IMERG is a gridded rainfall product (Level 3) from the GPM mission. This high-resolution 175 

product provides rainfall intensities with a spatiotemporal resolution of 0.1°×0.1° every 30 176 

minutes between 60°N−60°S. It is obtained by processing (i.e., intercalibration, merging, 177 

and spatiotemporal interpolation) all the microwave precipitation estimates available from 178 

the GPM constellation (Huffman et al., 2017b). IMERG also incorporates infrared data 179 

from geostationary satellites, and it is calibrated with global gauge analyses of 180 

precipitation (Schneider et al., 2015a, 2015b). With three “flavors”, IMERG products are 181 

developed to address different user requirements of latency and accuracy, i.e., Early Run 182 

(near-real-time), Late Run (reprocessed near-real-time), and Final Run (post-real-time). 183 

Technical insights on IMERG and its recent update IMERG V04 (Final) can be found in 184 
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(Huffman et al., 2017a, 2017b, 2017c). The availability of IMERG–Final goes from 12 185 

March 2014 to the present with a latency of four months. This availability limits the number 186 

of TCs that one can potentially analyze. IMERG products contain several attributes 187 

(subsets). We only focus on the precipitationCal subset which offers the most accurate 188 

rainfall estimates. From here onwards, we refer to IMERG V04 Final (precipitationCal) 189 

only as IMERG. (GPM rainfall datasets are freely available at the NASA (National 190 

Aeronautics and Space Administration) portal http://pmm.nasa.gov/data-191 

access/downloads/gpm). 192 

Any circular variable (or observation) represented as a unit vector x is equivalent to 193 

complex number � = ��� = cos 
 + � sin 
 , where � = √−1. Such a unit vector can be 194 

placed in the complex plane with its real component (cos 
) on the horizontal axis, and its 195 

imaginary component (� sin 
) on the vertical axis. For a graphic interpretation consult 196 

(Mardia and Jupp, 2000, Fig. 2.1; Pewsey et al., 2013, Fig. 3.1). 197 

Summary statistics such as the sample mean direction (
̅) and resultant length (��), and 198 

circular variance (�) can be computed from circular data on the complex plane. The 199 

sample mean direction indicates the direction of the mean resultant (unit) vector of the 200 

sample (Pewsey et al., 2013, ch.3). It is given by 
̅ = tan�� ! "⁄ $ ∈ &0,2�$, where ! =201 

)�� ∑ sin 
+,+-� , and " = .∑ cos 
+,+-� / )⁄  (only valid for " ∧ ! ≠ 0), 
+ represents the angle of 202 

a unit vector 2 with regard to the chosen zero/north, and ) the sample size. As noted by 203 

(Pewsey et al., 2013, ch. 3), the sample mean direction is a good measure of central 204 

location for unimodal samples that are close to symmetric. The sample mean resultant 205 

length is defined by �� = √!3 + "3 ∈ &0,14, and it is used as a measure of “concentration” 206 

for unimodal circular data (Pewsey et al., 2013, ch.3). If all the unit vectors 2 are identical 207 

then �� = 1. Conversely, the more �� approaches 0, the more evenly spread around the 208 



10  

unit circle the data is. A particular case where �� = 0 may imply that all unit vectors cancel 209 

each other out, meaning that they all are evenly directed in the complex plane. The 210 

sample circular variance is defined as � = 1 − �� ∈ &0,14. 5 is the concentration parameter, 211 

equivalent to the “reliability” (6�3) of a normal distribution (Murray and Morgenstern, 212 

2010). It can be obtained by linear interpolation from tabulated values of �� (e.g., Mardia, 213 

1972b, p.298, Table Appendix 2.3) or ) and �� (e.g., Mardia and Jupp, 2000, p.364, Table 214 

Appendix 2.5). 215 

Several tests have been developed to evaluate or infer the uniformity and symmetry 216 

conditions of the sample. (Pewsey et al., 2013, ch. 5) strongly recommend the Rayleigh 217 

test for departure from uniformity in unimodal circular distributions. For multimodal 218 

departures from uniformity, they advise omnibus tests such as Kuiper's �,, Watson's 73, 219 

and Rao's spacing test, for instance. All the previous tests are for continuous circular data 220 

(i.e., data not grouped into bins). (Dhakal et al., 2015) noticed that while the Rayleigh is 221 

powerful against unimodal alternatives of uniformity (but not against multimodal 222 

alternatives, as suggested by (Pewsey et al., 2013)), the Rao's spacing and Kuiper's �, 223 

tests are consistent against unimodal and multimodal alternatives of uniformity. A 224 

parametric bootstrap adaptation of the Watson's 73 test is one alternative to test the 225 

goodness-of-fit of a specified distribution (Agostinelli and Lund, 2017; Tsagris et al., 2017). 226 

A sample can also be tested for two types of symmetry on the unit circle, reflective 227 

symmetry and ℓ-fold symmetry. A distribution is reflectively symmetric about an angle 
 if 228 

the reflection of the distribution over such an angle is identical to the original distribution 229 

(Pewsey et al., 2013, ch.4). If a distribution is identical to the original distribution after 230 

being rotated through an angle 2� ℓ⁄ , such a distribution is said to be ℓ-fold symmetric. For 231 

simplicity, we only test for reflective symmetry. A mathematical description of all these 232 



11  

tests is beyond the scope of the present work. Still, we perform all of the above-mentioned 233 

tests (Sec. 3) to improve on the summary statistics, and gain a better perspective on the 234 

underlying distribution from which the sample is potentially drawn. 235 

Our data exhibits multimodality (Fig. 1), therefore we follow the approach of a finite 236 

mixture of unimodal Von Mises–Fisher (MvMF) distributions. Non-parametric approaches 237 

(e.g., MvMF) offer more complex alternatives to account for the multimodality and 238 

asymmetry of irregular samples. The Von Mises distribution is a classic model in circular 239 

statistics, and it is considered the “equivalent” to the normal distribution model for linear 240 

data (Fisher, 1993b; Pewsey et al., 2013, ch. 4). It is also the most common, and more 241 

investigated approach given its easy-to-interpret parameters (Pewsey et al., 2013, ch. 4). 242 

The Cardiod, Wrapped Cauchy, Von Mises, Jones-Pewsey family, and Inverse Batschelet 243 

family models are alternative unimodal distributions developed to fit continuous circular 244 

data. For more details see (Pewsey et al., 2013, ch. 4). 245 

As clearly presented and explained by (Qin et al., 2016) (see also Dhillon and Sra, 2003; 246 

Hornik and Grün, 2014), the 9-variate Von Mises–Fisher distribution of a 9-dimensional 247 

unit random vector : ;for : ∈ ℝ>, in the unit hypersphere B>��, and ‖:‖ = 1E follows the 248 

probability density function: 249 

 F :|H, 5$ = I> 5$ ∙ exp 5 ∙ HL:$. (1)

In Eq. (1), 5 ;for 5 ≥ 0E is the concentration parameter that quantifies how tightly the 250 

distribution is around the mean direction H ;FOP ‖H‖ = 1E, HL: is the cosine similarity 251 

between : and H, i.e., cos : − H$ ;for : and H expressed in radiansE; and I> 5$ is a 252 

normalizing constant defined as: 253 
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 I> 5$ = 5> 3⁄ ��

 2�$> 3⁄ ∙ Q> 3⁄ �� 5$ , where 

Q> 3⁄ �� 5$ ∶= S 1
T! ∙ Γ T + 9 2⁄ − 1 + 1$

W

X-Y
∙ Z5

2[
3∙X\> 3⁄ ��

. 

(2)

In Eq. (2), Q> 3⁄ �� 5$ is the infinite series form (Arfken et al., 2013, Eq. (14.99)) of the 254 

modified Bessel function of the first kind with order 9/2 − 1 and argument 5, and Γ T +255 

9 2⁄ − 1 + 1$ ∶=  T + 9 2⁄ − 1$! the gamma function. In our case, 9 = 2, and the 9-variate 256 

Von Mises–Fisher distribution (Eq. (1)) reduces to the Von Mises distribution for the unit 257 

circle (Fisher, 1993a; Mardia, 1972a; Pewsey et al., 2013). 258 

The simplest and most common approach in multimodal probability density functions for 259 

circular statistics is that of a finite mixture of Von Mises–Fisher (MvMF), which is given by, 260 

e.g., (Qin et al., 2016): 261 

 
F^:_;`, H, 5Ea-�b c = S `a ∙ F :|Ha, 5a$

b

a-�
, for 

0 ≤ `a ≤ 1, and ∑`a = 1. 

(3)

In Eq. (3), `a is the mixing proportion of the e-unimodal Von Mises–Fisher distributions 262 

(PDFs). This equation has no analytical solution, hence its parameters are computed via 263 

Maximum Likelihood Estimates under an Expectation Maximization framework (Banerjee 264 

et al., 2005; Dhillon and Sra, 2003). The interested reader is pointed to the numerical 265 

solution implemented by (Hornik and Grün, 2014), given that is from the R-package 266 

movMF that we compute the parameters  `a, Ha, 5a$ of the assumed MvMF–PDFs. 267 

An objective assessment of the optimal/best mixture (number) of e-unimodal Von Mises–268 

Fisher distributions is that of Akaike's or Bayesian information criterion (AIC or BIC, 269 

respectively, (Pewsey et al., 2013, p.114, ch.6)). The idea behind these criteria is to select 270 
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the least complex of all models providing equally good fits (i.e., parsimony). We use the 271 

BIC criterion to select the number of distributions for a given MvMF–PDFs. 272 

As with (Rios Gaona et al., 2018), we downscaled IBTrACS attributes to 30-minute 273 

IMERG native resolution. We interpolated the 6-hour TC-centers to 30-minute resolution 274 

via cubic spline interpolation of latitudes and longitudes. Hence, the interpolated TC-275 

centers are not absolutely accurate. Nevertheless, the variability generated by such a 276 

method has no practical effect on the radii-averaged precipitation (Bowman and Fowler, 277 

2015). For every 30-minute TC-center, we extracted IMERG rainfall up to a radius of 278 

1,000km, every 7km from the TC center outwards (i.e., 0km, 7km, 14km ...). For each 279 

radius, we averaged all the rainfall depth from the TC center up to the radius under 280 

consideration. Following (Bowman and Fowler, 2015; Wu et al., 2015), we compute the 281 

local time (LST, fghL) of all radii as the difference from their UTC (fiLj) with regard to their 282 

longitude k ∈ &−180°, +180°4, i.e., fghL = &fiLj + k 12 180⁄ $4. For each storm we select 283 

the LSTs at which all maximum rainfall averages occur. 284 

We stratify our analysis into six categories: storm duration, storm development, storm 285 

intensity, basin of origin, radial proximity to the TC center, and surface (land or ocean). 286 

The basin-of-origin and surface categories are entirely based on the coordinates of the TC 287 

center. A TC is considered to be over land if its center is geographically located over land, 288 

regardless of its proximity to the shore. We define three radial intervals to further stratify 289 

our analysis of maximum rainfall with regard to its proximity to the TC center. The storm-290 

duration category is based on the day, relative to the storm beginning, from which a LST 291 

(or maximum TC-rainfall) was sampled, whereas the storm-development category is 292 

based on the quartile from which a given LST was sampled. The intensity-category is 293 

based on the MSW of the storm (for a given center). The MSW for a given 30-minute TC 294 
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center corresponds to the previous 6-hourly step stored in the IBTrACS. We re-295 

categorized the TC intensity into four categories based on the Saffir-Simpson Hurricane 296 

Scale (SSHS - Simpson, 1974): for MSW < 64 kt (33.1 m·s-1, TS), for 64 ≤ MSW < 96 kt 297 

(33.1 ≤ MSW < 49.4 m·s-1, CAT12), for MSW ≤ 96 kt (CAT35), and extra-tropical cyclones 298 

(ET). 299 
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Figure 1: a. Circular distribution for 6-min-bins data (orange dots), and continuous data (black 301 

circles), for a 1024-value sample of maximum rainfall per storm. The dark blue continuous curve 302 

indicates the optimal MvMF-PDFs (6 mixtures), whereas the continuous green curve represents a 303 

fit of 8 mixtures, and the dashed green curve a fit of 1 vMF-PDF. The direction and magnitude of 304 

the black arrow are the sample mean direction (
̅), and the sample mean resultant length (��), 305 

respectively. A 1-h-bin circular histogram is also plotted. b. Circular distributions and best-fit MvMF-306 

PDFs for TCs stratified by intensity, i.e., TS (green), CAT12 (blue), CAT35 (pink), and ET (gold). c. 307 

Bayesian information criterion (BIC) against a given number of MvMF, for the intensities in panel b, 308 

and the optimal mixture in panel a. (dark blue curve). The circles indicates the lowest point of the 309 

related BIC curve, which represents the optimal number of vMF mixtures that best describes the 310 

sample multimodality, i.e., 2 for ET, 5 for CAT35, and 6 for CAT12, TS, and all data (no stratification 311 

applied). 312 

3. Results and Discussion 313 

The summary statistics for the sample of 1024 unit vectors that represent the LSTs at 314 

which maximum precipitation (per storm for all the 259 TCs under analysis) occurs are: 315 


̅=1.952 hours or 0.5111 radians (sample mean direction), ��=0.131 (sample mean 316 

resultant length), and �=0.8693 (sample circular variance). The concentration parameter 317 

(5) is 0.26375. Bear in mind that as the sample of average rainfall per TC is really large 318 

(multiple radii per several TC-centers), each storm can potentially have several rainfall 319 

estimates of equal maximum value (especially if one uses up to two significant 320 

figures/digits in the rounding up). This is why in this case we have a 1024-maximum 321 

sample for 259 TCs. 322 

The n-value for the Rayleigh was 0, which indicates the rejection of the null hypothesis of 323 

uniformity. The n-values for the Kuiper's �,, Watson's 73, and Rao's spacing tests were 324 

smaller than 0.01, 0.01, and 0.001, respectively, which led us to the rejection of the null 325 

hypothesis of uniformity. The “goodness-of-fit” test for the grouped data as presented in 326 

Fig. 1-a, i.e., 6-min bins yielded n-values of 0.026, and 0.743 for the null hypotheses of 327 

uniform, and Von Mises distribution, respectively. Therefore, the null hypothesis of a 328 

uniform distribution that fits the sample is rejected (with a 2.6% significance level). The n-329 

value for the reflective symmetry test was 0.053, which implies the rejection of the null 330 
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hypothesis of an assumed reflectively symmetric distribution at the 5.3% significance 331 

level. The result of all these tests, jointly with a visual evaluation of Fig. 1-a, suggests that 332 

a-priori assumptions of isotropy, unimodality and reflective symmetry do not hold for our 333 

sample. Hence, we must turn to non-parametric circular statistics to evaluate and quantify 334 

the multimodality present in the diurnal cycle of maximum TC-rainfall (Fig. 1, for instance). 335 

Fig. 1-a shows the distribution of the 1024 samples for TC-rainfall maxima, grouped into 6-336 

min bins. In both distributions, either continuous or stacked, one can see how the data is 337 

not equally distributed over the circular space (anisotropy and multimodality). Maximum 338 

TC-rainfall tends to concentrate roughly around five times, i.e., ~2, 5, 10, 14, and ~22h; 339 

and somewhat spread between 15 and 21h (~18h average). This figure also highlights 340 

how summary statistics are misleading if some a-priori knowledge on the type-of 341 

distribution is not known. In Sec. 2, we established the MvMF distributions as the 342 

appropriate approach for a non-parametric multimodal fitting given its easy-to-interpret 343 

parameters. A visual inspection of Fig. 1-a reveals that, most likely, a mixture of 5 vMF-344 

PDFs should be sufficient to describe well the sample distribution. 345 

Fig. 1-c shows the BIC values for different number of unimodal vMF-PDFs (mixtures). Six 346 

is the optimal number of unimodal vMF-PDF for the overall distribution, i.e., no 347 

stratification implemented. As seen from Fig. 1-a, a single unimodal vMF-PDF is not 348 

suitable to identify the diurnal cycle. On the other hand, an 8-MvMF-PDF offers a quite 349 

detailed, and parametrized distribution at the expenses of parsimony. Nevertheless, Fig. 350 

1-c tells us that only 6 vMF-PDFs are necessary to accurately account for the 351 

multimodality of the sample's distribution, and thus to identify the diurnal cycle of TC-352 

rainfall. This can be seen from Fig. 1-a on how the continuous dark blue curve (6 vMF-353 

PDFs) simply and accurately comprises the information gathered by the continuous green 354 
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curve (8 vMF-PDFs). Fig. 1-c also shows the BIC values for the stratification of TC-rainfall 355 

maxima given the intensity category (i.e., TS (green curve), CAT12 (blue curve), CAT35 356 

(pink curve), and ET (gold curve)). The optimal mixture for each of these distributions is 6, 357 

6, 5, and 2, respectively. This optimal fit can also be seen in Fig. 1-b, in which the MvMF-358 

PDFs are plotted over the binned sample distribution of each intensity category. 359 

Numerical solutions for small-size samples often yield large values of 5, which 360 

consequently yield infinite (∞) values of probability F :|H, 5$ (Eq. (1)). Hence, the MvMF-361 

PDFs here presented (e.g., Table 1) correspond to the lowest possible BIC obtained (from 362 

1 to 9 components) for which all of its unimodal vMF-PDFs are finite and/or defined. 363 

The four predominant mean times (H's) of the diurnal cycle of TC-rainfall maxima are 2.22, 364 

5.20, 9.88, and 21.75h (Fig. 1-a, and Table 1 - ALL rows). These times account for the 365 

largest 5's and `'s, i.e., the concentration parameter and mixing proportion of each 366 

unimodal vMF-distribution, which describe ~72% of the MvMF-PDF of TC-rainfall maxima. 367 

About 22% of the distribution is described by the mean direction H=17.80h, which is 368 

spread between ~15 and ~21h. This distribution has the lowest concentration parameter 369 

(5=2.36), which is an indication of how sparse the sample is around its H. The remaining 370 

~6% belongs to H=14.02h, with a high 5 despite its lowest contribution to the MvMF-PDF. 371 

Hence, it seems that there are two main cycles of rainfall maxima in TCs: one with mean 372 

directions (H) of 9.88 and 21.75h (note the ~12h of difference), referred to as the ~10–22h 373 

diurnal cycle; the other with mean directions of 2.22 and 5.20h, referred to as the ~2–5h 374 

(or ~22–2–5h) semi-diurnal cycle. This latter is also perceived, although very slightly, in 375 

the afternoon hours, i.e., ~14–18h (or ~10–14–18h) semi-diurnal cycle. (Navarro et al., 376 

2017) showed a cycle in storm intensity that reaches its peak in the “early hours” of the 377 

morning, and lags a periodic response of ~6h from latent heat. Their results suggests that 378 
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the axisymmetric TC diurnal cycle is primarily a balanced response driven by periodic 379 

heating. Such a signal is a function of the local solar time, which can helps to explain our 380 

similar results regardless of stratification by basin or type of surface. (Navarro et al., 2017) 381 

also hint at the extension of the cycles, arguing that long diurnal periods exhibit a more 382 

balanced solution with greater impact on the storm intensity, whereas short diurnal periods 383 

project onto inertia–buoyancy waves, radiating energy away from the region of heating. 384 

The general (ALL) MvMF-PDF is quite representative of the samples over the ocean, as 385 

97.4% of all TC-rainfall maxima correspond to TC-centers located over ocean. This can be 386 

seen from Fig. 2-f (ALL and Ocean curves) and from the very similar MvMF-PDF 387 

parameters in Table 1 - ALL and Ocean rows. For maximum TC-rainfall from TC-centers 388 

located inland, its mean direction is 2.06h with 5=0.45 (Table 1 - Land rows). Even though 389 

nothing conclusive can be inferred or concluded from such a small sample (~2.6% of 390 

data), it is widely known that TCs weaken as they move inland, which complicates the 391 

identification of a diurnal cycle for inland maximum TC-rainfall. (O’Neill et al., 2017) found 392 

that over land and on average, tropical rainfall rates reach their maximum in the afternoon. 393 

According to (Dai, 2001; Wu et al., 2015), convective precipitation over land tends to peak 394 

in the late afternoon to early evening hours (most likely to a direct response to daytime 395 

heating of the surface and the planetary boundary layer), whereas over oceans the peak 396 

is reached in the early morning hours. They did not explore ocean-land stratification 397 

though. On the other hand, (Bowman and Fowler, 2015) carried out an ocean-land, basin 398 

and intensity stratification. They suggested that either the TC-land interaction (landfall) 399 

has little incidence on the diurnal behavior of the storms, or that as storms move inland 400 

they retain their oceanic pattern/cycle until the land fraction is too large for this pattern to 401 

be present. More generally, (Bowman and Fowler, 2015) found a diurnal variation of TC-402 
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rainfall with peak rainfall at ~06:00 LST, and a minimum at ~18:00 LST. Although our 403 

results do show a lag of 12h for both diurnal and semi-diurnal cycles, our results do not 404 

show maxima at ~06:00 LST but rather at ~9.88h (LST) (or even at ~5.20h). Nevertheless, 405 

and as seen in Table 1 - ALL rows, several maxima are scattered around H=17.80h. A 406 

different and larger sample (i.e., 15 years of TMPA-3B42 data), and an alternative 407 

approach (i.e., characterization of the diurnal cycle of rainfall in terms of Fourier harmonics 408 

by sines and cosines fitting via least squares regression), may be the reasons behind the 409 

discrepancy between our maxima (~9.88h) and the one (~06:00) of (Bowman and Fowler, 410 

2015). Such diurnal cycles of oceanic precipitation with maxima in early morning hours 411 

(Bowman and Fowler, 2015) are common in studies such as (Gray and Jacobson Jr., 412 

1977; Kraus, 1963; Serra and McPhaden, 2004), just to cite a few. (Jiang et al., 2011) also 413 

performed an ocean-land stratification in which they found two peaks for the diurnal 414 

variation of TC-rainfall over land: one at ~01:30–07:30 LST, and the other one at 16:30–415 

19:30 LST (minimum at 10:30–13:30 LST). They also found maximum TC-rainfall at 416 

04:30–07:30 LST (and minimum ~19:30–22:30 LST) for non-stratified analyses. As seen 417 

from Fig. 2-f and Table 1 - ALL rows, the maximum by (Jiang et al., 2011) is consistent 418 

with the second peak of the ~2–5h semi-diurnal cycle, i.e., H=5.20±1h. With regard to our 419 

land stratification, our results showed an absence of any diurnal cycle (Table 1 - by 420 

SURFACE rows, and Fig. 2-f). Radial stratification, as suggested by (Bowman and Fowler, 421 

2015), is an alternative to reduce the impact on the diurnal cycle amplitude of averaged 422 

TC-rainfall involving potentially non-raining areas (at large radii). Nevertheless, a 423 

sensitivity analysis carried out by (Wu et al., 2015) indicates that the decrease in average 424 

rainfall and diurnal variation in the outer rainbands is not attributable to such non-raining 425 

averages. 426 
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Figure 2: Mixtures of Von Mises-Fisher probability density functions (MvMF-PDFs) for stratifications 428 

by storm duration (a), storm development (b), storm intensity (c), basin of origin (d), radii proximity 429 

(e), and surface (f). The light-grey region indicates the maximum κ among all stratification, so 430 

individual concentration parameters among all MvMF-PDFs can be visually compared. 431 

Short-living storms only develop a semi-diurnal cycle, whereas intermediate and long-432 

lasting TCs develop stable diurnal and semi-diurnal cycles of maximum rainfall. A 433 

temporal stratification of maximum TC-rainfall with regard to the number of days a given 434 

TC lasts shows that for short-living TCs, namely TCs that last up to five days, there is 435 

mainly a ~10–22h diurnal cycle (Fig. 2-a). Its H's are clustered around 9.90 and 21.52h, 436 

with 5's of 98.15 and 65.51, respectively (Table 1 - by DURATION rows). Fig. 2-a also 437 

shows a ~10–14h semi-diurnal cycle (H=14.01 with 5=73.61) for long-lasting storms, and a 438 

much less marked one (5=3.47) for short-living storms. As we show later, this ~10–14h 439 

semi-diurnal cycle is mainly characteristic of TCs developed in the WP basin (Fig. 2-d). 440 

Intermediate and long-lasting storms (i.e., TCs lasting more than 10 days) follow a similar 441 

dynamic in terms of both diurnal and semi-diurnal cycles. Their ~10–22h diurnal cycles 442 

show H's of 9.89 and 9.87h, and 21.77 and 21.76h, respectively for intermediate and long-443 

lasting TCs. As the storm lasts longer (e.g., more than 10 days), maximum TC-rainfall 444 

seems to be more concentrated at the end of the diurnal cycle than at its beginning. This 445 

can be seen from the larger values of 5, i.e., 60.14 and 116.60 at ~22h than those of 446 

108.12 and 67.88 at ~10h (Table 1 - by DURATION rows, and Fig. 2-a). Intermediate and 447 

long-lasting TCs have similar ~22–2–5h semi-diurnal cycles (i.e., H's of 2.20 and 5.74h for 448 

intermediate TCs, and H's of 2.23 and 4.97h for long-lasting TCs). 449 

A second temporal stratification showed that as the storms reach their end, maximum TC-450 

rainfall develops earlier in the day (rather than later). When the duration of all TCs were 451 

stratified into quartiles, the first quartile (i.e., the first 25% of any storm, Fig. 2-b – light 452 

blue curve, and Supplemental Fig. 2 - q1) distinctively showed one diurnal ~10–22h cycle 453 
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(H's of 9.86 and 21.72h), and two semi-diurnal cycles, which are distinctively marked 454 

around the H's of 2.42 and 14.15h. The ~5h (or ~17h) component of the semi-diurnal cycle 455 

does not fully develop for this quartile (Supplemental Fig. 2 - q1). Bear in mind that ~22- 456 

and ~2-h H's are only characteristic of intermediate and long-lasting storms (Fig. 2-a). The 457 

5's for this first quartile are larger for ~22–2h (i.e., 92.50, and 511.50) than for ~10–14h 458 

(i.e., 76.98, and 40.06). This implies a larger concentration of maximum TC-rainfall during 459 

“night” (~22–2–5h semi-diurnal cycle) than “day” hours (~10–14–18h semi-diurnal cycle). 460 

As the storms develop, i.e., 2nd and 3rd quartiles, the larger concentration of maximum TC-461 

rainfall shifts from ~22 to ~10h. Fig. 2-b (or Supplemental Fig. 2 - q2 or - q3) shows how 462 

the H's for the 2nd and 3rd quartiles (i.e., 9.90 and 9.87h, respectively) present larger 5's 463 

(85.41 and 96.25) than those for the H's of 21.66 and 21.83h (5's of 91.63 and 51.08, 464 

respectively for the 2nd and 3rd quartiles). It appears that the ~2–5h semi-diurnal cycle is 465 

mostly characteristic of the 2nd and 3rd quartiles; stronger for the 2nd quartile, and 466 

weakening for the 3rd one, with more samples concentrated at ~2 than at ~5h (Table 1 - by 467 

DEVELOPMENT rows; and Supplemental Fig. 2 - q2 and - q3). The ~10–14h semi-diurnal 468 

cycle is not present anymore in the 3rd and 4th quartiles. The absence of multimodality for 469 

the last (4th) quartile, given also the extension of the sample, indicates that as the storm 470 

vanishes, no diurnal or semi-diurnal cycle of maximum TC rainfall can be identified 471 

(Supplemental Fig. 2 - q4). Our results for this alternative temporal stratification agree with 472 

the suggestion by (Navarro et al., 2017) that the magnitude of the diurnal signal may vary 473 

throughout the lifetime of the storm. According to them, results in the literature are mixed 474 

about the impact of TC diurnal cycle with regard to storm maturity, i.e., some advocate for 475 

impacts in the developing (early) stages (e.g., Hobgood, 1986; Melhauser and Zhang, 476 

2014; Sundqvist, 1970), while others for impacts in the mature (late) stages (e.g., Craig, 477 
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1996; Tang and Zhang, 2016; Tuleya and Kurihara, 1981). Our results lay in both groups 478 

as the 2nd and 3rd (and even the 1st) quartiles show diurnal and semi-diurnal cycles. 479 

The stratification by intensity shows that the overall (unstratified) MvMF-PDF is roughly 480 

based on the TS category. This can be seen from Fig. 1-b and Fig. 2-c, and the similar 481 

parameters in Table 1 - TS and ALL rows. For the TS category, the diurnal (~10–22h) and 482 

semi-diurnal (~2–5h) cycles of maximum TC-rainfall are equally distinctive. This can be 483 

seen from its 5's of 36.88, 9.31, 85.00, and 87.92, respectively for H's of 2.23, 5.30, 9.89, 484 

and 21.72h. All of the above four vMF unimodal distributions account for ~75% of the 485 

mixture (~20% is described by H=17.54h, with 5=1.65 the lowest for any category of 486 

intensity). TS is the only category with a weak ~10–14h semi-diurnal cycle around 487 

H=13.90h. As with the stratification by surface, this behavior is expected for the TS 488 

category, which accounts for 61.1% of the maximum rainfall analyzed. CAT12 and CAT35 489 

account for 24.7% and 13.1% of the sample, respectively. The MvMF-PDF for CAT12 is 490 

mainly described by a strong ~10–22h diurnal cycle with H's of 9.89 and 21.65h (Table 1 - 491 

CAT12 rows). This strong diurnal cycle is responsible for ~39% of the distribution. About 492 

33% of this MvMF-PDF comes from the less marked ~2–5h semi-diurnal cycle with H's of 493 

2.46 and 5.98h. Given that the largest proportion of the MvMF-PDF for CAT35 (~74%) 494 

comes from very diffused (5's of 5.87 and 6.31) mean directions (H's of 3.57 and 18.04h, 495 

respectively), we can ascertain the absence of any (semi-) diurnal cycle for extremely 496 

intense TCs. One of the causes for this absence might be related to the random nature of 497 

such an extreme maximum rainfall. This is yet to be proven, as there are few CAT35 498 

samples (13.1%). Still, our results for CAT35 are in line with (Leppert II and Cecil, 2016) 499 

who associated intense TCs with a weaker diurnal signal. They based this assertion on 500 

studies such as (Browner et al., 1977; Hobgood, 1986). With only 1.1% of ET storms, no 501 
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conclusive non-parametric analysis was possible for the ET category. Similar to (Bowman 502 

and Fowler, 2015), (Wu et al., 2015) stratified oceanic TC-rainfall (inner core, i.e., 0-503 

100km, and outer rainbands, i.e., 100-500km) by weak (CAT1 and TS), and strong (CAT2-504 

5) storms. (Wu et al., 2015) found that the daily maximum is reached at 02:30–05:00 UTC 505 

(inner core), and at 05:00–08:00 UTC (rainbands) for weak storms, whereas for strong 506 

storms these periods are 01:30–04:00 UTC (inner core) and 04:00–12:00 UTC 507 

(rainbands). In our case, all intensity categories encompass the early periods for either the 508 

inner core or rainbands, i.e., ~2.7±0.9h and ~5.6±0.4h, even though the early-hours 509 

shifting is not as large as the one in (Wu et al., 2015). Nevertheless, our analysis does not 510 

show correspondence with their late periods. With regard to inner core or rainbands, we 511 

later show that these periods remain “the same” for 0-200km (or 0-50km). 512 

With regard to the stratification by basin, the two main diurnal cycles of maximum TC-513 

rainfall are provided by the Pacific basin with 75.3% of the sample. The sample 514 

percentages for the SP, EP, WP, SI, NI, and NA basins are 15.4, 21.2, 38.7, 8.5, 8.1, and 515 

8.1%, respectively. With H's of 2.33, 5.36, 9.91, and 21.60h, the WP basin follows the 516 

~10–22h diurnal and ~2–5h semi-diurnal cycles (Fig. 2-d – dark blue curve). It is also the 517 

only basin with a distinctive H=14.12h, which suggests a late and light ~10–14–18h semi-518 

diurnal cycle. For detailed 5 values see Table 1 - by BASIN rows. WP is the basin that 519 

resembles the overall (ALL) MvMF-PDF the most (Fig. 2-f - light blue curve, and Fig. 1-a - 520 

continuous dark blue curve). This is probably due to its highest percentage of sampled 521 

TCs (38.7%). (Jiang et al., 2011) also found that the WP basin has the largest number of 522 

deepest and most intense tropical cyclone precipitation, cloud, and convective cell 523 

features. The EP and SP basins follow a pattern similar to the WP basin. Both present a 524 

distinctive ~10–22h cycle, and a less marked ~2–5h semi-diurnal cycle, practically absent 525 
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in the SP basin. As seen from Supplemental Fig. 1, it appears that the ~2–5h semi-diurnal 526 

cycle is something really characteristic of the north Pacific basin (i.e., WP and EP basins; 527 

see also Table 1 - by BASIN rows). The non-parametric analysis is less conclusive for the 528 

SI, NI, and NA basins, which add the remaining quarter (24.7%) of the sample altogether. 529 

The Indian basin (SI and NI) presents a distinctive mean time ~10h, with 5's of 123.52 and 530 

113.71, respectively for SI and NI. The difference between the SI and NI basins is that the 531 

latter shows a scattered sample (5=0.83) at H=2.77h, whereas the scattered sample for 532 

the former is at H=20.66h (5=0.80). Note the discordance of these H's from the diurnal or 533 

semi-diurnal cycles. Such a disagreement may be influenced by non-parametric analyses 534 

based on few samples (8.3% on average for each Indian basin). The NA basin (Fig. 2-d - 535 

red curve, and Supplemental Fig. 1 - NA) has also one of the lowest samples (8.1%), 536 

which does not allow a clear identification of any diurnal cycle. 537 

When the analysis was stratified by radii, the general pattern (ALL) mimicked that of the 538 

maximum TC-rainfall within 200km radii (Fig. 2-e – light blue curve). Thus, the ~10–22h 539 

diurnal cycle, and the ~2–5h and ~14–18h semi-diurnal cycles are mainly present within 540 

200km from the TC-center (H's of 2.22, 5.19, 9.88, 14.02, and 21.75h). For radii between 541 

200 and 500km, there is only a weak (5=3.33) H=5.73h. This, and the fact that no 542 

maximum TC-rainfall was beyond 500km radii suggest that TC-maximum rainfall only 543 

develops within 200km radii. We stratify radii further down to three more intervals within 544 

200km, i.e., 0-50, 50-100 (not presented here), and 100-200km. As shown in Table 1 (by 545 

RADII rows) and Fig. 2-e, 50km is descriptive of the overall behavior for maximum TC-546 

rainfall within 200km, as these two radii (0-50 and 0-200km) follow almost identical diurnal 547 

and semi-diurnal cycles. Almost the entire sample (98.2%) is in the 0-50km range, 548 

whereas 99.7% is within 200km. (Wu et al., 2015) suggested that the outward propagation 549 
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of the diurnal signals is associated with the internal structure of TC convective systems, 550 

regardless of the basins where they develop. Recent work presented by (Leppert II and 551 

Cecil, 2016) is somewhat in agreement with our results for radial stratification. They found 552 

that for 100-500-km radii TC-rainfall (clouds) peaks in the morning (01:30–07:30 LST), 553 

and that the minimum is reached between 10:30–19:30 LST. From Fig. 2-e, one can see 554 

the similarities of these peaks with the ~2–5h semi-diurnal cycle for radii shorter than 555 

500km (or even 200km). Nevertheless, in what they call “minimum”, we have the ~10–22h 556 

diurnal cycle. Our ~22–2–5h semi-diurnal cycle also appears in their inner core (0-100km, 557 

“with a maximum at 22:30–04:30 LST”) associated with only upper levels (8-10km). 558 

According to (Leppert II and Cecil, 2016), the peak between 01:30–07:30 LST is also 559 

found in several previous studies (e.g., Bowman and Fowler, 2015; Lajoie and 560 

Butterworth, 1984; Muramatsu, 1983). 561 

The MvMF-PDFs in Fig. 2-e represent PDFs of maximum TC-rainfall for several radii. As 562 

presented in (Rios Gaona et al., 2018), the average maximum TC-rainfall for the intervals 563 

0-200km, 200-500km, and 500-1000km are 48.07, 11.61, and 3.41mm, respectively. 564 

Likewise, the average maximum TC-rainfall for the intervals 0-50km, 50-100km, and 100-565 

200km are 48.04, 27.87, and 19.26mm, respectively. About 48mm of rainfall either for 0-566 

50 or 0-200km confirms the vast representativeness of TC-rainfall maxima just within the 567 

first 50km from the TC-center. Such detailed statistics close to the TC-centers are 568 

possible thanks to the high resolution rainfall retrievals offered by IMERG.   569 
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Table 1: Mean times µ, concentration parameters κ, and mixing proportions α for up-to 6 MvMF-PDFs for un- and stratified TC-rainfall maxima. 570 

All the curves shown in Fig. 2 can be reconstructed if the parameters presented in this table are plug into Eqs. (3), (2), and (1). The ‘size’ is the 571 

percentage of a given category relative to its stratification. 572 

MvMF-PDFs #1 #2 #3 #4 #5 #6 size [%]   MvMF-PDFs #1 #2 #3 #4 #5 #6 size [%] 

ALL (no stratification)   by INTENSITY 

  

µ 2.2152418 5.2016072 9.8812249 14.0237249 17.8024248 21.7446129 

100 

  

TS 

µ 2.2271917 5.2946123 9.8851433 13.9043633 17.5407806 21.7197800 

61.1 κ 31.98304 8.89786 82.76682 68.67366 2.35992 82.38932   κ 36.88254 9.31251 85.00220 59.11905 1.65370 87.92400 

α 0.1818 0.1798 0.1795 0.0632 0.2218 0.1739   α 0.1984 0.1647 0.1985 0.0606 0.1923 0.1854 

by DURATION   

CAT12 

µ 2.4581381 5.9759664 9.8883872 14.2248417 17.7298958 21.6490429 

24.7 
1-5 

days 

µ 3.8888570 - 9.9019170 14.4064328 - 21.5235256 

15.8 

  κ 19.95348 19.52417 87.33768 66.70176 3.47275 74.19870 

κ 3.91834 - 98.14502 3.46633 - 65.50892   α 0.1891 0.1381 0.1772 0.0794 0.2063 0.2099 

α 0.3931 - 0.2657 0.1873 - 0.1538   

CAT35 

µ 3.5711101 - 9.9043271 14.0923809 18.0361222 22.1192259 

13.1 
6-10 

days 

µ 2.1977949 5.7379428 9.8905352 - 16.4961242 21.7734378 

44.7 

  κ 5.87049 - 71.11366 266.51113 6.30509 79.32346 

κ 31.34776 8.99902 108.11746 - 2.73278 60.13451   α 0.3973 - 0.0742 0.0777 0.3469 0.1039 

α 0.2141 0.1548 0.1700 - 0.2669 0.1942   

ET 

µ 2.5263721 - 9.6360580 - - - 

1.1 
>10 

days 

µ 2.2267869 4.9729403 9.8672777 14.0073784 18.1866170 21.7614043 

39.5 

  κ 3.26545 - 71.66865 - - - 

κ 33.72356 9.92566 67.87566 73.60951 3.11870 116.60151   α 0.6397 - 0.3603 - - - 

α 0.1852 0.1771 0.1475 0.0714 0.2376 0.1813   by BASIN 

by DEVELOPMENT   

SP 

µ 3.7529389 - 9.7617842 15.9540656 - 22.0136527 

15.4 
1st 

quartile 

µ 2.4184217 4.0470154 9.8587574 14.1444514 17.3995804 21.7164537 

32.7 

  κ 3.90692 - 110.68994 3.46186 - 96.25777 

κ 511.49821 3.30833 76.98216 40.05593 4.72186 92.49673   α 0.4128 - 0.1787 0.2142 - 0.1943 

α 0.0734 0.2841 0.1804 0.1028 0.1403 0.2191   

SI 

µ - - 9.8441757 - - 20.6582418 

8.5 
2nd 

quartile 

µ 2.1408816 5.4999594 9.8999525 14.0022682 17.8312735 21.6622133 

31.8 

  κ - - 123.52417 - - 0.79691 

κ 33.17070 15.49447 85.40689 75.88738 2.82371 91.63058   α - - 0.1347 - - 0.8653 

α 0.2314 0.1624 0.1894 0.0669 0.1775 0.1724   

WP 

µ 2.3264704 5.3600035 9.9105106 14.1227946 17.2293971 21.6014794 

38.7 
3rd 

quartile 

µ 1.9331084 4.6909351 9.8675160 - 16.9885625 21.8251026 

29.2 

  κ 34.66562 9.89724 78.75968 137.32522 3.78443 94.58224 

κ 44.60595 6.55601 96.25009 - 2.26269 51.07975   α 0.1839 0.1775 0.1683 0.0622 0.2231 0.1850 

α 0.1217 0.2206 0.1602 - 0.3325 0.1650   

NI 

µ 2.7692542 - 9.9647873 - - - 

8.1 
4th 

quartile 

µ - 3.6825855 10.0059731 - 16.6991725 21.9284509 

6.3 

  κ 0.83253 - 113.70709 - - - 

κ - 4.54927 99.61211 - 2.56488 283.27545   α 0.7786 - 0.2214 - - - 

α - 0.4831 0.1827 - 0.2154 0.1188   

EP 

µ 2.4953669 5.8594334 9.9006361 - 16.5093351 21.6812694 

21.2 by RADII   κ 40.66527 32.67055 117.70027 - 1.42725 89.48307 

0-50 

km 

µ 2.1983336 5.1768204 9.8823541 14.0114995 17.7677399 21.7395741 

98.2 

  α 0.2445 0.0713 0.1646 - 0.3035 0.2161 

κ 32.71734 9.12278 83.12776 67.38022 2.45511 82.79723   

NA 

µ 3.2040271 - 9.9497323 15.1860953 - 21.6652349 

8.1 α 0.1815 0.1780 0.1802 0.0623 0.2215 0.1765   κ 5.83075 - 52.51851 1.80111 - 63.59554 

0-200 

km 

µ 2.2158813 5.1849830 9.8802406 14.0236901 17.8014777 21.7446034 

99.7 

  α 0.4628 - 0.1672 0.2139 - 0.1561 

κ 31.67820 9.23182 82.30998 68.71572 2.35887 82.38592   by SURFACE 

α 0.1821 0.1774 0.1802 0.0634 0.2225 0.1744   

Ocean 

µ 2.2491078 5.2375259 9.8708787 14.0332012 17.7416074 21.7369835 

97.4 
100-200 

km 

µ - - - 12.8738133 - - 

0.5 

  κ 31.40649 9.78592 82.29653 66.17639 2.37856 81.33687 

κ - - - 0.18349 - -   α 0.1845 0.1739 0.1808 0.0647 0.2176 0.1785 

α - - - 1.0 - -   

Land 

µ 2.0573905 - - - - - 

2.6 
200-500 

km 

µ - 5.7290486 - - - - 

0.3 

  κ 0.45273 - - - - - 

κ - 3.33307 - - - -   α 1.0 - - - - - 

α - 1.0 - - - -                     
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4. Summary and Conclusions 573 

The goal of this work was to quantitatively assess the diurnal cycle of maximum TC-574 

rainfall by means of non-parametric circular statistics. To do so, we cross-referenced the 575 

IBTrACS (v03r10) and IMERG (V04) data sets to accurately account for high-resolution 576 

rainfall within a 2,000km-wide swath along the path of a given TC. We analyzed 259 TCs 577 

that occurred from March 2014 through February 2017 (~3 years of data). The IMERG 578 

data set is a gridded satellite product of high spatiotemporal rainfall estimates (0.1°×0.1° 579 

every 30 minutes), which makes it very suitable for analyses related to the diurnal cycle of 580 

TC rainfall. Circular statistics is a mathematical framework that allows statistical analyses 581 

accounting for the intrinsic periodicity of circular/directional variables. In our case, such a 582 

circular (random) variable is the time of the day for which a TC-rainfall maximum occurred. 583 

We modelled the multimodality and anisotropy of TC-rainfall maxima using the finite 584 

mixtures (aggregations) of unimodal Von Mises-Fisher distributions (MvMF-PDFs), which 585 

is the most common approach, given its easy-to-interpret parameters (e.g., mean 586 

direction/time H, concentration parameter 5, and mixing proportion `). We stratified our 587 

analysis by storm duration, maturity, and intensity, basin of origin, proximity of the TC-588 

rainfall maxima to the storm center (i.e., by radii), and whether the TC center was over the 589 

ocean or land. 590 

On average, when no stratification is implemented over the 259 TCs here analyzed, there 591 

are two main cycles of maximum rainfall: one with mean directions (H) of 9.88 and 21.75h 592 

(5's of 82.77 and 82.39, respectively), referred as the ~10–22h diurnal cycle; the other one 593 

with H's of 2.22 and 5.20h (5's of 31.98 and 8.90, respectively), referred as the ~2–5h 594 

semi-diurnal cycle. This semi-diurnal cycle appears to be also present at afternoon hours, 595 



30  

i.e., ~14–18h (H's of 14.02 and 17.80h with respective 5's of 68.67 and 2.36). 596 

Ocean, TS (tropical storms, i.e., MSW < 64kt), WP (West Pacific), 0-200km (or even 0-597 

50km) radii, long-lasting (i.e., storms with duration longer than 10 days), and 2nd quartile 598 

are the stratifications that resemble the general MvMF-PDF of the ~10–22, and ~2–5h 599 

cycles the most. All of these particular stratifications average H's of 2.23, 5.26, 9.89, and 600 

21.70h, with standard deviations of 0.061, 0.178, 0.017, and 0.060, respectively. This 601 

correspondence is mainly attributed to the large influence each of these stratifications 602 

exert on the sample. That is, out of the sample of 2014 values (of maximum TC-rainfall 603 

per storm), 97.4% comes from Ocean, 61.1% from TS, 38.7% from WP, 98.2% from radii 604 

smaller than 50km, 39.5% from storms lasting more than 10 days, and 31.8% from all their 605 

2nd quartiles. 606 

Short-lived TCs (i.e., 1-5 days) mainly develop a diurnal cycle (of maximum rainfall) 607 

around H's of 9.90 and 21.52h (i.e., ~10–22h diurnal cycle). Intermediate, and long-lasting 608 

(i.e., 5-10 days, and longer than 10 days, respectively) TCs develop both diurnal (~10–609 

22h) and semi-diurnal (~2–5h) cycles. Long-lasting storms show a weak ~14–18h semi-610 

diurnal at H=14.01h, which is mainly characteristic of TCs from the WP basin. As storms 611 

last longer, the maximum TC-rainfall distribution concentrates more at the end of the 612 

diurnal cycle (~22h) than at its beginning (~10h). 613 

At an earlier stage of a storm (1st quartile) there is also a larger concentration of maximum 614 

TC-rainfall at the end of the diurnal cycle (H=21.72h) than at its beginning (H=9.86h). This 615 

concentration shifts towards the beginning of the ~10–22h diurnal cycle as the storm 616 

progresses to its 2nd and 3rd quartiles. The ~22–2–5h semi-diurnal cycle is mainly 617 

characteristic of the 2nd (H's of 2.14 and 5.50h) and 3rd (H's of 1.93 and 4.69h) quartiles. As 618 

the storm matures this semi-diurnal cycle weakens. No particular diurnal or semi-diurnal 619 
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cycle is developed at the end of the storm (4th quartile). 620 

While CAT12 storms show a distinctive ~10–22h diurnal cycle (H's of 9.89 and 21.65h), 621 

CAT35 storms show an absence of any (semi-) diurnal cycles, which might be attributed to 622 

the very random nature of such an extreme maximum rainfall. It is reminded that CAT12 623 

and CAT35 respectively account for 24.7 and 13.1% of the sample, and that nothing 624 

conclusive can be said for ET storms as only few samples of TC-rainfall maxima were 625 

within this category (1.1%). 626 

All the Pacific basins (i.e., WP, EP - East Pacific, and SP - South Pacific) show a 627 

distinctive ~10–22h diurnal cycle. On average, their H's are at 9.86 and 21.77h, with WP 628 

the basin with the larger number of samples (38.7% of TC-rainfall maxima). WP is the only 629 

basin with two distinctive semi-diurnal cycles, i.e., ~2–5h (with H's of 2.33 and 5.36h), and 630 

~14–18h (with H's of 14.12 and 17.23h). 631 

Neither the North Atlantic (NA) nor the Indian basins (SI - South Indian, and NI - North 632 

Indian) showed any distinctive diurnal and/or semi-diurnal cycles. Nevertheless, it appears 633 

that both Indian basins have predominant H's ~9.91h, with a tendency for the SI basin to 634 

distribute maximum rainfall at H=20.66h, and at H=2.77h for the NI basin. These different 635 

values of H's can be attributed to the lower number of samples the non-parametric 636 

analysis was based on (e.g., NA, NI and SI represent just 24.7% of the sample). 637 

When the analysis was stratified by radii, the ~10–22h diurnal and ~2–5h semi-diurnal 638 

cycles are rather similar among the 0-50 and 0-200km radii, given that 99.7% of the 639 

sample is within 200km, and 98.2% within 50km radii. This is a clear indication that the 640 

diurnal cycle of maximum TC-rainfall takes place within the first 50km from the TC-center 641 

(outwards). No maximum TC-rainfall was found for radii beyond 300km. 642 
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The level of detail reached in this work was possible due to high- resolution and quality 643 

data sets such as IBTrACS and IMERG. Despite their intrinsic and potential deficiencies, 644 

the combination of such data sets offers a comprehensive record and a rather accurate 645 

evaluation of TC-rainfall. An accurate description (or modelling) of the diurnal cycle of 646 

maximum rainfall from TCs further propels better and more accurate TC-rainfall models, 647 

which in the end serves to increase our resilience against this type of natural hazards and 648 

their catastrophic consequences. 649 
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